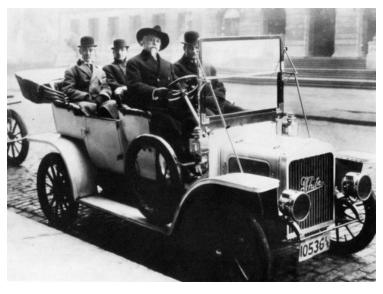
Extremely Low Frequency Magnetic Fields inside Electric Vehicles

Tony R. Almeida, A. Paulo Coimbra, A. Traça de Almeida

Departamento de Engenharia Eletrotécnica e de Computadores Universidade de Coimbra

ISR – Instituto de Sistemas e Robótica

Summary


- Introduction
 - Electric vehicles
 - Exposure guidelines
 - ELF effects on human body
 - Contribution
- Material and Methodology
- Results
- Conclusions and Future work

Early 1900s...

- Steam-powered engines
 - Speed
 - Less expensive
 - Long time to fire up
 - Frequent stops for water

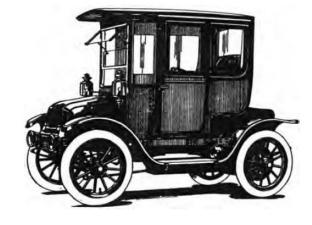
Model O Steamer (1904)

Early 1900s...

- Gasoline-powered internal combustion engines
 - Dirtier
 - More difficult to start
 - Moderately more expensive
 - They could travel longer distances at a reasonable

speed without stopping

Winton Phaeton (1899)


Early 1900s...

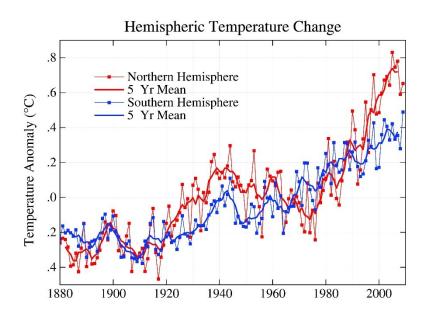
Electric vehicles

- Clean
- Quiet
- Slow
- Expensive

City and Suburban Electric Victoria (1902)

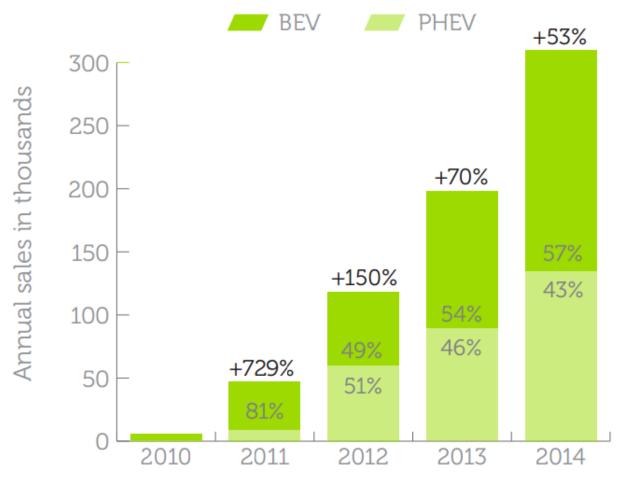
Babcock Electric Coupé (1912)

But...


- Better road systems connected many cities by the 1920s
- Fuel was cheap and readily available by 1905
- In 1912, the electric starter was introduced
- And, of course, Henry Ford mass production was introduced
 - In 1912 a Ford T cost USD\$650 against
 USD\$1750-3000 EV/Steam-powered
 - By 1927, it reached \$USD290! (about USD\$4000 now a days)

Early 2000s...

- The global warming concept
- Rising oil costs


http://www.giss.nasa.gov/research/news/20100121/

http://www.macrotrends.net/1369/crude-oil-price-history-chart

EV Market evolution

http://www.iea.org/evi/Global-EV-Outlook-2015-Update_1page.pdf

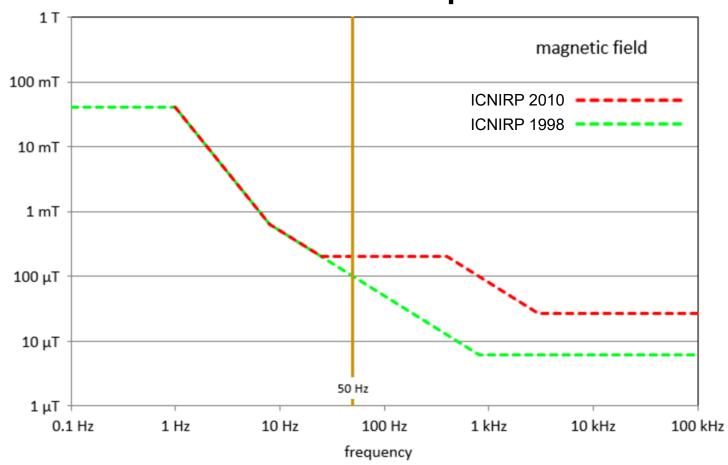
BEV - Battery Electric Vehicle
PHEV - Plug-in Hybrid Electric Vehicle

EV Market evolution

- Charging infrastructure deployment has continued growing
- Battery costs have come down
- Energy density has climbed
- Vehicle electrification has gone multi-modal
 - 46 000 electric buses and 235 million electric twowheelers deployed

- ICNIRP International Commission on Non-Ionizing Radiation Protection
- Guidelines For Limiting Exposure To Time-varying Electric, Magnetic, And Electromagnetic Fields (up To 300 GHz) – 1998
- Later, these guidelines where updated and divided in three frequency ranges: Static fields (0 Hz),
 LF (1 Hz – 100 kHz), and HF (100 kHz – 300 GHz)

- 1999/519/EC Council Recommendation on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)
- This Council Recommendation is based on the ICNIRP 1998 Exposure Guidelines
- It recommends that Member States introduce these limits for public exposure with certain provisos:
 - taking account of the costs and benefits
 - where the time of exposure is significant


Frequency range	E-field strength $(V m^{-1})$	H-field strength (A m ⁻¹)	B-field (μT)
up to 1 Hz 1–8 Hz 8–25 Hz	 10,000 10,000	3.2×10^4 $3.2 \times 10^4/f^2$ 4,000/f	4×10^4 $4 \times 10^4/f^2$ 5,000/f
3–150 kHz 0.15–1 MHz 1–10 MHz 10–400 MHz 400–2,000 MHz 2–300 GHz	87 87 $87/f^{1/2}$ 28 $1.375f^{1/2}$	5 $0.73/f$ $0.73/f$ 0.073 $0.0037f^{1/2}$ 0.16	6.25 $0.92/f$ $0.92/f$ 0.092 $0.0046f^{1/2}$ 0.20

f as indicated in the "Frequency range" column

General Public Exposure

EMF effects on human body

- ELF Main interaction:
 - Induction of electric fields and associated currents in tissues
 - Surface electric charge effects
- Electrostatic discharges
 - most sensitive 10% of volunteers at 50–60 Hz ranged between 2 and 5 kV/m
 - 5% found 15–20 kV/m annoying
- Induction of magnetic phosphenes
 - minimum threshold flux density around 5 mT at 20 Hz, rising at higher and lower frequencies

State of the art and contribution

- Public concern about the MF exposure level from new transportation technologies
- Published studies about magnetic field (MF) levels in electric cars is scarce
- Major sources of MF in cars include the tires and electric currents
 - one study on non-hybrid cars
 - two studies of hybrid cars
 - few studies have systematically compared exposures in both hybrid and non-hybrid cars

Summary

- Introduction
 - Electric vehicles
 - Exposure guidelines
 - ELF effects on human body
 - Contribution
- Material and Methodology
- Results
- Conclusions and Future work

Measurement Equipment

- Aaronia Spectran NF-5020
 - 1 Hz 1 MHz
 - Noise floor: Reading bandwidth limitation

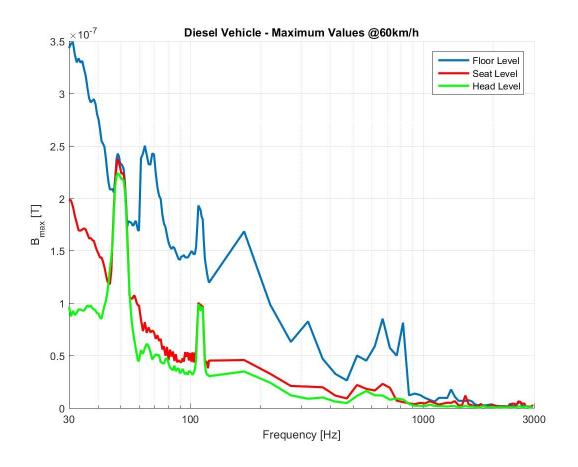
Laptop with Aaronia Spectrum
 Analizer Software MCS

Methodology

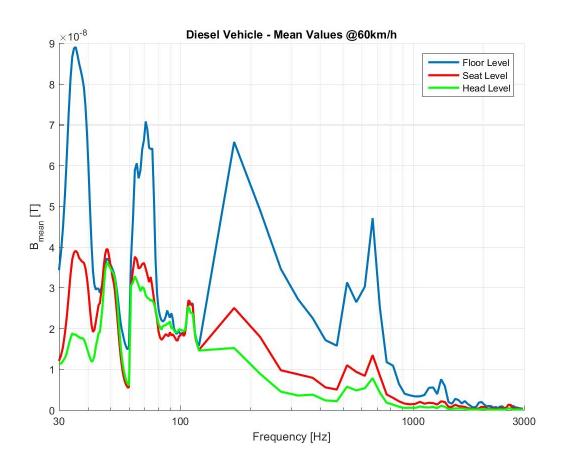
- MF levels were measured in 3 different vehicles
 - 1 Battery Electric Vehicle (BEV)
 - 1 Plug-in Hybrid Electric Vehicle (PHEV)
 - 1 Diesel vehicle
 - Three different manufacturers
- Measurements along three frequency ranges
 - 30 60 Hz
 - 60 120 Hz
 - 120 3000 Hz

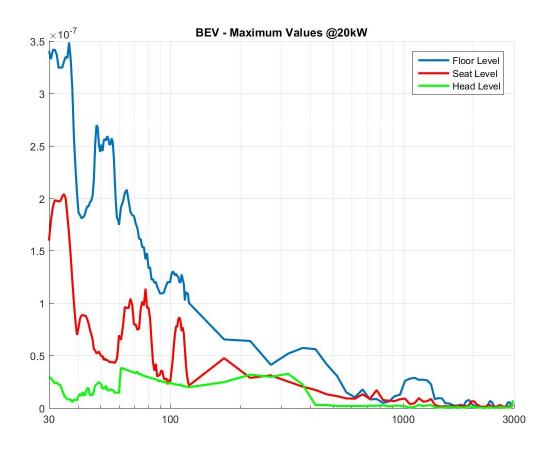
Methodology

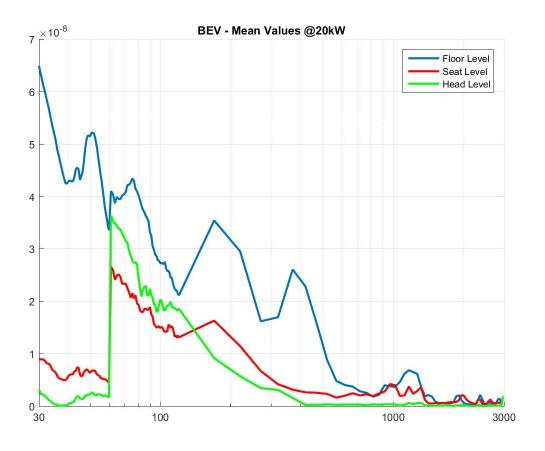
- Measurements at each of the four seats
- Measurements at three different heights
 - Floor level
 - Seat level
 - Head level
- Measurements at:
 - Constant Power: 20kW / 40kW (EV)
 - Constant Speed: 60km/h (Diesel)
- Avoided High Voltage Power Lines

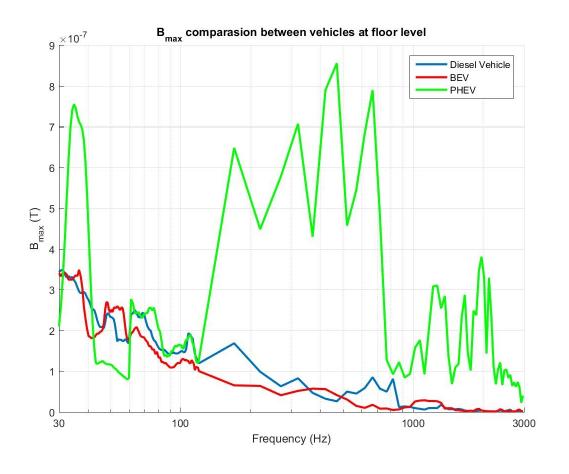

Summary

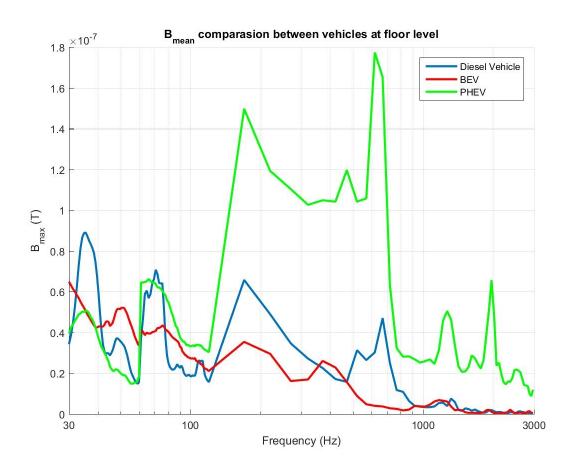
- Introduction
 - Electric vehicles
 - Exposure guidelines
 - ELF effects on human body
 - Contribution
- Material and Methodology
- Results
- Conclusions and Future work


Results – Diesel Vehicle (B_{max})


Results – Diesel Vehicle (B_{mean})


Results – BEV (B_{max})


Results – BEV (B_{mean})


Results - Comparasion between vehicles

Results – Comparasion between vehicles

Results

Frequency Range 30 – 60 Hz

	Diesel	BEV	PHEV
B _{max} (nT)	348	349	755
	@31.2 Hz	@34.8 Hz	@34.8 Hz
B _{mean} (nT)	89	65	51
	@35.4Hz	@30 Hz	@35.4 Hz

	Rural Home	Urban Home
B _{max} (nT)	53 @48 Hz	389 @48 Hz
B _{mean} (nT)	30 @48Hz	347 @48 Hz

Results

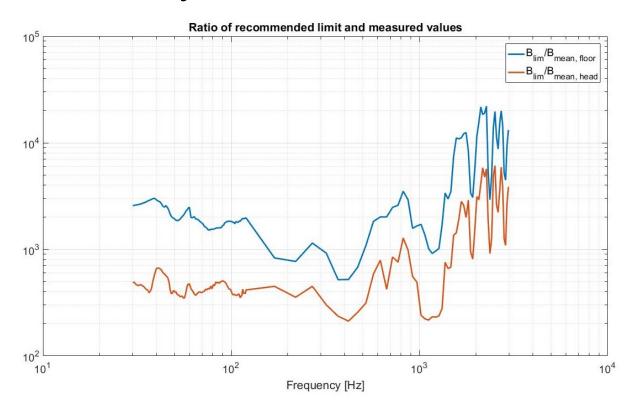
Frequency Range 30 – 60 Hz Microwave oven ON

	Rural Home		Urban Home	
	50 cm	100 cm	50 cm	100 cm
B _{max} (nT)	617	148	628	147
	@48 Hz	@48 Hz	@48 Hz	@48 Hz
B _{mean} (nT)	592	142	583	130
	@48 Hz	@49,8 Hz	@48 Hz	@48 Hz

Summary

- Introduction
 - Electric vehicles
 - Exposure guidelines
 - ELF effects on human body
 - Contribution
- Material and Methodology
- Results
- Conclusions and Future Work

Conclusions


- Measurement of MF in three different vehicles:
 Diesel, BEV and PHEV
- Preliminary work. Intended to enlarge the number of vehicles to be assessed.
- The MF are higher at the floor level, decreasing with height: proximity to cables
- In general, MF are higher at lower frequencies

Conclusions

 Values obtained are significantly lower than those recommended by ICNIRP/EU

Conclusions

 Finally, values are similar to those measured in domestic environment (well... unless you have a power line over your house)

Future work

- Enlarge the measurement (Statistical significance)
- Assessment of MF in different electric vehicles
 - Trams
 - Trains
 - E-bikes
 - Segways

Extremely Low Frequency Magnetic Fields inside Electric Vehicles

Tony R. Almeida, A. Paulo Coimbra, A. Traça de Almeida

Departamente de Engenharia Eletrotécnica e de Computadores Universidade de Coimbra

ISR – Instituto de Sistemas e Robótica

